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Abstract

A graph G is triangle-saturated if every possible edge addition to G
creates one or more new triangles (3-cycles). Such a graph is minimally
triangle-saturated if removal of any edge from G leaves a graph that
is not triangle-saturated. This paper investigates adding a single new
vertex to a triangle-saturated graph so as to produce a new triangle-
saturated graph, and determines the conditions under which the extended
graph is minimally saturated. Particular attention is given to minimally
saturated extensions which are primitive (no two vertices have the same
neighbourhood). The results are applied to construct primitive maximal
triangle-free graphs of every order n ≥ 9.

1 Introduction

Given two finite simple graphs G and H, we say that G is H-saturated if every
possible addition of an edge to G would create a new copy of the graph H. In
particular, G is triangle-saturated (or just saturated) if addition of any edge e to
G creates a triangle (3-cycle) in G + e which is not already present in G. One
reason that triangle-saturated graphs are an important class to study is that they are
precisely the graphs with diameter at most 2. A minimally triangle-saturated graph
G is a triangle-saturated graph from which deletion of any edge e leaves a spanning
subgraph G − e which is not triangle-saturated. The maximal triangle-free graphs
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are precisely the minimally triangle-saturated graphs which contain no triangles. All
triangle-saturated graphs can be generated from the minimally triangle-saturated
graphs simply by adding edges. We call a graph primitive if it has no duplicate
vertices, that is, if distinct vertices have distinct neighbourhoods. It turns out that
all minimally triangle-saturated graphs can be generated by beginning with those
which are primitive and successively duplicating appropriate vertices.

These notions were studied in [2] and various methods of constructing infinite
families of primitive, minimally triangle-saturated graphs are described in [3] and
[4]. The construction methods in those papers produce new triangle-saturated graphs
from old, preserving minimality and primitivity. However, the graphs produced have
considerably higher order than the starter graphs. In the present paper we consider
the problem of constructing new triangle-saturated graphs from old by adjoining a
single new vertex in an appropriate way. In Section 2, we describe a general con-
struction and determine the conditions under which the extended graph is minimally
saturated. Primitive extensions are discussed in Section 3. In Section 4, the con-
struction is applied to construct one or more primitive maximal triangle-free graphs
of each order n ≥ 9.

2 The Construction

For any graph G, the graph produced by adjoining a new vertex x adjacent to every
vertex of G is the join of G and x, denoted by G ∨ x. Any additional edge inserted
in G ∨ x necessarily is incident with two vertices of G, both of which are adjacent
to x, so the new edge forms a triangle with x. Hence the join G ∨ x is always
triangle-saturated. Indeed, when n ≥ 2 the graph Kn ∨ x is a star, and clearly is
triangle-saturated, so

Remark 1 For any graph G, the join G ∨ x is triangle-saturated, and is minimally
triangle-saturated if and only if G has no edges.

Consequently, to construct minimally triangle-saturated graphs by adjoining a
new vertex x to a given nonempty graph G, we must make x adjacent to some
proper subset of the vertices of G. For any subset D of the vertices of G, the extension
[G, D, x] is the graph obtained by adjoining the vertex x to G so that it is adjacent to
precisely the vertices in D. We are interested in the relationship between properties
of D and properties of [G, D, x].

For any vertex v, let N(v) and N [v] denote, respectively, the open and closed
neighbourhoods of v. If D is any set of vertices, then

N(D) :=
⋃
d∈D

N(d) and N [D] :=
⋃
d∈D

N [d]

are the open and closed neighbourhoods of D. A vertex set D dominates G, or is
a dominating set for G, if N [D] contains every vertex of G: equivalently, N(D)
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Figure 1: B0 and two extensions

contains every vertex of G − D. A minimal dominating set has no proper subset
which dominates G.

For any graph G, it is easy to verify that if [G, D, x] is triangle-saturated, then
D dominates G. Hence, we deduce

Remark 2 If G is any triangle-saturated graph, then the extension [G, D, x] is
triangle-saturated if and only if D is a dominating set for G.

Starting with a triangle-saturated graph G, what conditions on D will allow us
to extend G to a minimally saturated graph [G, D, x]? A necessary condition is easy
to find:

Lemma 1 Let G be a triangle-saturated graph and suppose the extension [G, D, x]
is minimally triangle-saturated. Then D is a minimal dominating set for G.

Proof. By Remark 2, D must be a dominating set. If D is not minimal, then D−v is
still a dominating set for some v in D. Consider [G, D−v, x] = [G, D, x]−vx. Because
D− v dominates G, every vertex in G− (D − v) is adjacent to some neighbour of x,
so adding any edge from x to G in [G, D, x]−vx will create a triangle. Also any edge
inserted within G will create a triangle because G is saturated. Hence [G, D, x]− vx
is saturated, contradicting the assumption that [G, D, x] was minimally saturated.
Hence D is a minimal dominating set for G.

The condition that D be a minimal dominating set is generally not sufficient
to guarantee that [G, D, x] is minimally triangle-saturated. Consider the graph B0

(Fig. 1), chosen because it is the graph of smallest order which is minimally triangle-
saturated but not triangle-free [2]. The set {a, e} is a minimal dominating set for
B0. Let C := [B0, {a, e}, x], as shown in Fig. 1. Then C is triangle-saturated, by
Remark 2, but is not minimally saturated because C − be is saturated.
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To characterize those [G, D, x] which are minimally saturated we need several
more definitions. A vertex set D is irredundant in G if its closed neighbourhood
N [D] is strictly larger than the closed neighbourhoods of each of its proper subsets.
If D dominates G and is irredundant, then it is easily seen to be a minimal dominating
set and a maximal irredundant set. Indeed, a dominating set is minimal if and only
if it is irredundant (see Prop. 4.1 of [1]).

An edge in a triangle-saturated graph is essential if its removal leaves an unsat-
urated graph. If a triangle-saturated graph is minimally saturated then every edge
is essential. When an essential edge is removed, a corresponding replacement edge is
any edge (possibly the same edge) which may be inserted without creating a triangle.
For example, the essential edge ab in B0 has ac and ae as replacement edges.

Remark 3 If e is an essential edge of a triangle-saturated graph, any replacement
edge is incident with at least one vertex of e.

This is easily seen by noting that if e′ is a replacement for e, then e′ creates a
triangle � in G + e′ but not in G + e′ − e = G− e + e′. Hence e and e′ must belong
to �, so e and e′ have at least one vertex in common.

Let e be any essential edge in the triangle-saturated graph G, and let D be any
set of vertices in G. Then D blocks e if every replacement edge for e has both its
vertices in D. Note that an edge e could only be blocked by D if at least one vertex
of e is in D, by Remark 3.

If D is any set of vertices in G, and e := ab is any edge of G, then e is a D-spine if
a ∈ D and D∩N [b] = {a}. It turns out that D-spines play a key role in determining
whether [G, D, x] is minimally saturated.

Theorem 1 Let G be any minimally triangle-saturated graph and D any subset of
vertices of G. Then the extension [G, D, x] is minimally triangle-saturated if and
only if (1) D is an irredundant dominating set for G and (2) any edge of G which is
blocked in G by D is a D-spine.

Proof. To see the necessity of (1) and (2), assume that [G, D, x] is minimally
saturated. Then D is a minimal dominating set for G by Lemma 1. Hence D is
irredundant, and (1) follows. Now consider any edge e in G. There must be a
replacement edge e′ which can be added to [G, D, x]− e without creating a triangle.
Evidently, at least one vertex b of e′ must be in G − D. If there is such an e′ with
both vertices in G, then it is a replacement for e in G, so e is not blocked by D.
On the other hand, if no such e′ has both vertices in G, then e is blocked in G by
D and necessarily e′ = bx. Also b must be a vertex of e, by Remark 3. Because
G is minimally saturated, e does have at least one replacement edge e′′ in G. Both
vertices of e′′ must be in D, so at least one vertex a of e must be in D by Remark
3, and therefore e = ab. It now follows that D ∩ N [b] = {a}, so e = ab is a D-spine.
Thus every edge of G which is blocked by D is a D-spine, so (2) follows.

For the converse, assume that (1) and (2) hold. Remark 2 ensures that [G, D, x]
is saturated, so it suffices to show that every edge of [G, D, x] has a replacement.
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Suppose the edge dx is deleted, for some d ∈ D. Since D is irredundant, there is a
vertex v in N [d] but not in N [D − d], so insertion of vx in [G, D − d, x] does not
create a triangle. Again, suppose an edge e of G is deleted. If e is not blocked in G
by D, then there is a replacement edge for e in G which does not create a triangle
with x. If e is blocked in G by D, then e is a D-spine, so e = ab with a ∈ D and
D ∩ N [b] = {a}. Then bx is a replacement for ab, since insertion of bx in [G, D, x]
creates a unique triangle abxa, which is not present in [G− e, D, x]. Thus every edge
of [G, D, x] is essential, so [G, D, x] is minimally saturated.

Corollary 1 Every maximal triangle-free graph has at least one maximal triangle-
free extension.

Proof. An easy induction shows that any finite graph has an independent domi-
nating set. So suppose G is a maximal triangle-free graph and D is an independent
dominating set for G. Then D automatically satisfies condition (1) of Theorem 1.
Since G is triangle-free, each edge is a replacement for itself, and condition (2) is sat-
isfied vacuously. Then [G, D, x] is minimally saturated, by Theorem 1. But [G, D, x]
is triangle-free, so is a maximal triangle-free graph.

Theorem 1 can be extended to encompass all triangle-saturated graphs, not just
those which are minimally saturated, as follows:

Corollary 2 Let G be any triangle-saturated graph and let D be any subset of ver-
tices of G. Then [G, D, x] is minimally triangle-saturated if and only if (1) D is an
irredundant dominating set for G, and (2) any edge of G which is inessential or
blocked in G by D is a D-spine.

Proof. Suppose [G, D, x] is minimally saturated. Then (1) follows as in the proof
of Theorem 1. Also, in view of Theorem 1, (2) will follow from showing that every
inessential edge e of G is a D-spine. Since there is no replacement edge for e in G, it
must have a replacement edge bx, where b is a vertex of e, by Remark 3. Then b must
be in G−D, since bx is not in [G, D, x]. But b ∈ N [D], so b has a neighbour a ∈ D.
If e �= ab, adding bx to [G, D, x]− e would produce a triangle abxa, contradicting the
fact that bx is a replacement edge for e. Hence e = ab. But adding bx to [G, D, x]−ab
does not create a triangle, so D ∩ N [b] = {a}. Thus any inessential edge of G must
be a D-spine.

Checking the converse is straightforward, so is omitted.

For example, the 5-cycle C5 := abcdea is a minimally saturated graph, so C5 +ad
is saturated but not minimally so. It can be verified that D = {a, b} is an irredundant
dominating set and that the inessential edge ad and the essential edges bc and ae
are all D-spines. The only remaining essential edge with at least one vertex in
D is ab, and the replacement edge be shows that ab is not blocked by D. Hence
[C5 + ad, {a, b}, x] is minimally saturated, by Corollary 2; in fact, this is just the
graph B0. For convenience, any subset of the vertices of a triangle-saturated graph
will be called a support set if it satisfies the conditions of Corollary 2. In particular,
the proof of Corollary 1 shows that every maximal triangle-free graph has a support
set. Perhaps this generalizes to all minimally triangle-saturated graphs.
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Independent Edges Irredundant Support
D Set Blocked Domination Set

{a, e} yes be yes no
{b, d} no none yes yes
{b, f} yes none yes yes
{d, e} yes none yes yes
{a, c, f} yes ad, ce yes no

Table 1: Minimal dominating sets for B0

Conjecture 1 Every minimally triangle-saturated graph has a support set.

This would imply that every minimally triangle-saturated graph has a minimally
triangle-saturated extension.

The support sets for a minimally saturated graph must be among its minimal
dominating sets. Let us examine systematically the non-isomorphic extensions of
B0 (Fig. 1) based on minimal dominating sets. Up to automorphism, there are
five minimal dominating sets (Table 1), three of which are support sets. By The-
orem 1, there are just three minimally triangle-saturated extensions of B0, namely
B′

0 := [B0, {b, d}, x], B1 := [B0, {b, f}, x] and B′′
0 := [B0, {d, e}, x]. An independent

dominating set is automatically irredundant, so in a minimally saturated graph it is
a support set precisely when it blocks no edge which belongs to a triangle.

Two of the three minimally triangle-saturated extensions of B0 are based on
independent support sets. Moreover, every independent dominating set in a maximal
triangle-free graph is a support set, as noted in the proof of Corollary 1. Perhaps
this generalizes to all minimally triangle-saturated graphs.

Conjecture 2 Every minimally triangle-saturated graph has an independent support
set.

Further evidence supporting this conjecture is provided by the family of graphs
produced by the hanging planter construction [4]. Indeed, if G is any minimally
triangle-saturated hanging planter graph, duplication of its top vertex t yields an-
other minimally saturated graph, so N(t) is an independent support set in G.

Note that the neighbourhood of a in B0 is N(a) = {b, d}, so x is a duplicate of a
in B′

0. Similarly N(f) = {d, e}, so x is a duplicate of f in B′′
0 . Hence B1 (Fig. 1) is

the only minimally saturated extension of B0 which is primitive. The next section
takes up this subject.

3 Primitive Extensions

Suppose G is a maximal triangle-free graph and v is any vertex in G. Then the
neighbourhood N(v) is a support set for G, since it is an independent set and all
vertices of G − N [v] are at distance 2 from v, so are dominated by N(v). Thus the
extension [G, N(v), x] is minimally saturated by Theorem 1; but it is not primitive
because x duplicates v.

268



Remark 4 Let G be a minimally triangle-saturated graph. If every minimal dom-
inating set in G is the neighbourhood of some vertex, then no minimally triangle-
saturated extension of G is primitive.

For example, in the minimally saturated cycle C5 every minimal dominating set
is the neighbourhood of some vertex, so C5 has no minimally saturated extension
which is primitive. Again, no complete bipartite graph has a primitive minimally
saturated extension because its partite sets are its only support sets and each is the
neighbourhood of any vertex in the other set.

Which minimally triangle-saturated graphs have primitive extensions that are
also minimally saturated? We do not yet know the full answer. However, a theorem
of Pach [6] provides the answer for those graphs which are triangle-free, as we shall
now show.

Let G0 := K2 and for any integer k ≥ 1 let Gk be the graph formed from C3k+2

by adding all edges (chords) between vertices at distance 1 (mod 3) on the cycle.
Equivalently, if k ≥ 0 then Gk is the graph with vertex set Z3k+2 (the residue classes
of integers modulo 3k + 2), and edges ij precisely when |i − j| ≡ 1 (mod 3). The
graphs Gk are triangle-free circulant graphs [6], and in fact it is easy to see that
they are maximal triangle-free graphs. Let {Gk}∗ denote the family of all graphs
which can be derived from Gk by duplicating any vertices a finite number of times.
For example, {G0}∗ is the family of all complete bipartite graphs and {G1}∗ is the
family of graphs derived from C5 by vertex duplication. All members of {Gk}∗ are
maximal triangle-free graphs, by Corollary 2.3 of [2].

Theorem 2 (Pach) Let G be any triangle-free graph. Then every independent set
of vertices in G has a common neighbour if and only if G ∈ {Gk}∗ for some k ≥ 0.

If [G, D, x] is triangle-free, then G must be triangle-free and D must be an inde-
pendent set. By the results of Section 2, Pach’s Theorem then implies

Corollary 3 A maximal triangle-free graph G has a primitive maximal triangle-free
extension if and only if G /∈ ∪k≥0{Gk}∗.

Next let us explore the existence of primitive minimally triangle-saturated exten-
sions of minimally triangle-saturated graphs which are not triangle-free. The smallest
such graph is B0 (Fig. 1), of order 6. We noted in Section 2 that B1 = [B0, {b, f}, x]
is the unique minimally triangle-saturated extension of B0 which is primitive. There
are four minimally triangle-saturated graphs of order 7 which are not triangle-free
[2]: three extensions of B0, namely B′

0, B′′
0 and B1 (introduced prior to Table 1),

together with the graph M0 (Fig. 2). Of these, B1 and M0 are primitive, and B′
0 and

B′′
0 each have one pair of duplicate vertices. No minimal dominating set in B′

0 or B′′
0

contains exactly one of the duplicate vertices, so neither has a primitive minimally
triangle-saturated extension.

Let us call a support set D primitive if D is not the neighbourhood of any vertex
of G. Note that if D is a primitive support set for the minimally saturated graph
G, the extension [G, D, x] is certainly primitive if G is primitive, and can still be
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Figure 2: M0 and its unique primitive minimally saturated extension

primitive even if G is not primitive (provided exactly one of each pair of duplicate
vertices in G belongs to D). Note in particular that if some vertex of G has more than
one duplicate, no extension of G is primitive. Up to automorphism, there are three
primitive support sets in B1, which yield the order 8 primitive minimally saturated
graphs B2 := [B1, {b, x}, y], B3 := [B1, {a, c, x}, y], B4 := [B1, {d, e, f}, y]. Also, up
to automorphism there is a unique primitive support set in M0, so M0 has a unique
primitive minimally triangle-saturated extension M1 (Fig. 2).

We are indebted to Brendan MacKay for carrying out a computer search which
established that there are 11 primitive minimally triangle-saturated graphs of order
8, including B2, B3, B4, and M1 (Fig. 3). With the exception of Pach’s graph G2,
they all contain one or more triangles. Examination shows that all except G2 have
at least one primitive minimally saturated extension, suggesting

Conjecture 3 Every primitive minimally triangle-saturated graph which is not
triangle-free has a primitive minimally triangle-saturated extension.

If this conjecture is true, it would follow that the Pach graphs Gk must be the
only primitive minimally triangle-saturated graphs without a primitive minimally
triangle-saturated extension.

Note that {b, f} is an independent primitive support set for B0. Note further that
{a, c, x} is an independent primitive support set for B1, and any primitive support
set for M0 is also independent. Of course, Pach’s Theorem implies that G2 has no
primitive support set which is independent, but one is tempted to conjecture that all
minimally triangle-saturated graphs which are not triangle-free have an independent
primitive support set. However, it turns out that this fails for M1, though it holds
for the other 9 graphs of order 8 (Fig. 3). Up to automorphism, the primitive
support sets of M1 are {b, f, g} and {c, f, g}, neither of which is independent. The
independent support sets of M1 are N(x) = {a, e, f}, N(d) = {a, g}, N(f) = {c, g, x}
and N(g) = {d, e, f}, none of which is primitive. Hence

Remark 5 M1 is a primitive minimally triangle-saturated graph which is not triangle-
free and has no independent primitive support set.
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It was remarked earlier that an extension [G, D, x] of a minimally saturated graph
might be primitive and minimally saturated even though G itself is not primitive.
An example based on graph III (Fig. 3) can be obtained by duplicating the selective
vertex c (see [2]) to produce a minimally triangle-saturated graph A of order 9. Then
{a, b, c, d} is a primitive support set for A, so A′ = [A, {a, b, c, d}, y] is primitive (Fig.
4). Hence

Remark 6 The minimally triangle-saturated graph A is not primitive, but it has a
primitive minimally triangle-saturated extension.

Indeed, let B∗ be the graph obtained from G1 = C5 = 012340 by duplicating
vertex 1 and adding the edge 24. This new graph is triangle-saturated, but is neither
minimal (because of the edge 24) nor primitive (because of the duplicate of vertex
1). However {1, 2} is a primitive support set and [B∗, {1, 2}, x] is in fact B1.

Remark 7 The triangle-saturated graph B∗ is neither minimally saturated nor prim-
itive, but it has a triangle-saturated extension which is both minimally saturated and
primitive.

4 Maximal Triangle-free Graphs

As shown in [3] and [4], for sufficiently large n one can construct large numbers of
triangle-saturated graphs of order n that are both minimally saturated and primitive.
However, those constructions typically produce graphs that contain triangles. It is
more difficult to find primitive maximal triangle-free graphs. At least for small
orders, they form a tiny proportion of the total. Table 2 compares the number fn of
primitive maximal triangle-free graphs of order n with the number gn of minimally
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n gn fn

4 0 0
5 1 1
6 1 0
7 2 0
8 11 1
9 36 1
10 240 2
11 1986 4
12 · · · 8
13 · · · 24
14 · · · 91

Table 2: Primitive minimally saturated and maximal triangle-free graphs

triangle-saturated graphs of order n, for all orders that are known. We are again
indebted to Brendan McKay [5] for implementing a computer search to determine
these numbers.

In this section we describe a construction which yields primitive maximal triangle-
free graphs of every order n≥ 9. We start by finding a family of such graphs, one for
each order n ≡ 0 (mod 3) and then show how to extend each of them repeatedly. By
Corollary 1, there always exists an independent support set in a maximal triangle-
free graph G. The difficulty for guaranteeing primitivity is to make sure that the
newly added vertex does not duplicate a vertex of G. In fact, this is impossible if
G ∈ {Gk}∗ for any k ≥ 0, by Corollary 3.

Our construction begins with any of the circulant graphs Gk (defined in Sec. 3),
provided k ≥ 1. Add three new vertices s0, s1, s2 so that the Gk-neighbourhood of
s0 is

N0 = {i ≡ 0 (mod 3), 0 ≤ i ≤ 3k + 1}
and the Gk-neighbourhood of sr is

Nr = {i + r (mod 3k + 2) : i ∈ N0}
with r = 1, 2. Written compactly, these Gk-neighbourhoods are

Nr = N0 + r (mod 3k + 2), r = 1, 2.

We say that Nr is obtained from N0 by rotation through r modulo 3k + 2. These
neighbourhoods are intimately related to the structure of Gk as is shown by the
following observation.

Remark 8 N1 = N0 + 1 is precisely the neighbourhood of 0 in Gk.

Finally add a fourth vertex t adjacent only to s0, s1, and s2. The resulting
graph Hn has order n = 3k + 6. It is actually an example of the hanging planter
construction described in [4]. In the terminology of that paper the circulant graph
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Figure 5: The starter graphs H9 and H12

Gk is the base, the three si are the support vertices, and t is the top vertex. Note that
Hn is a maximal triangle-free graph, by Theorem 3 of [4], because Gk is a maximal
triangle-free graph and Hn is a hanging planter with base Gk and each of the sets N0,
N1 and N2 is independent. Moreover Hn is primitive, by Theorem 2 of [4], because
Gk is primitive. For the graphs H9 and H12 obtained from G1 and G2 respectively,
see Fig. 5.

Beginning with Hn for n = 3k + 6 and k ≥ 1, we now define a sequence of
extensions {Hn(r) : 2 ≤ r ≤ 3k + 1}. Let Hn(2) := Hn. Successively extend,
at each step adding a new vertex sr adjacent to the top vertex t and to the set
Nr := N0 + r (mod 3k + 2) obtained from N0 by rotation through r (mod 3k + 2).
Thus

Hn(r) = [Hn(r − 1), Nr ∪ {t}, sr] for 3 ≤ r ≤ 3k + 1.

Theorem 3 For 2 ≤ r ≤ 3k + 1, k ≥ 1 and n = 3k + 6, each Hn(r) is a primitive
maximal triangle-free graph.

Proof. The set N0 is an independent dominating set for Gk. Hence each of the
sets Nr := N0 + r (mod 3k + 2) with 0 ≤ r ≤ 3k + 1 is an independent dominating
set for Gk because Gk is a circulant graph. Moreover no two of these 3k + 2 sets are
identical.

The hanging planter construction ensures that Hn(2) = Hn is a primitive maximal
triangle-free graph. Now suppose that Hn(r − 1) is primitive and maximal triangle-
free, for some r satisfying 3 ≤ r ≤ 3k + 1, and the neighbourhood of t in Hn(r − 1)
is {s0, s1, · · · , sr−1}. Because Nr is an independent dominating set for Gk, it follows
that Nr∪{t} is an independent dominating set for Hn(r−1). Then, trivially, Nr∪{t}
dominates Hn(r−1) irredundantly, and since Hn(r−1) is triangle-free, Nr∪{t} blocks
no edge of Hn(r − 1). Hence Nr ∪ {t} is a support set for Hn(r − 1), so Theorem 1
guarantees that Hn(r) = [Hn(r − 1), Nr ∪ {t}, sr] is minimally saturated, and hence
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is a maximal triangle-free graph. Further, because the sets Ni with 0 ≤ i ≤ r are
all different, and t is not adjacent to Gk in Hn(r − 1), it follows that Nr ∪ {t} is not
the neighbourhood of any vertex in Hn(r− 1), so Hn(r) is primitive. Hence by finite
induction each Hn(r) with 2 ≤ r ≤ 3k +1 is a primitive maximal triangle-free graph.

Lemma 2 For 2 ≤ r ≤ 3k + 1, k ≥ 1 and n = 3k + 6, the graph Hn(r) has order
3k + r + 4 and size 1

2
(3k + 2)(k + 1) + (r + 1)(k + 2).

Proof. The base of the hanging planter Hn(2) = Hn is the circulant graph Gk. But
N1 = N0 + 1 is the neighbourhood of 0 in Gk, by Remark 8, and |N0| = k + 1, so Gk

is a regular graph of order 3k+2 and degree k+1. Hence Gk has size 1
2
(3k+2)(k+1)

and Hn has order 3k + 6.
Also Hn(r) is formed from Hn(2) by r − 2 extensions, so the order of Hn(r) is

3k + r + 4. Each edge of Hn(r) is either in Gk or is incident with a unique vertex
si, where 0 ≤ i ≤ r, and each si has degree k + 2 in Hn(r), so the size of Hn(r) is
1
2
(3k + 2)(k + 1) + (r + 1)(k + 2).

Lemma 3 No two graphs in the family {Hn(r) : 2 ≤ r ≤ 3k +1, k ≥ 1, n = 3k +6}
are isomorphic.

Proof. Suppose Hn(r) and Hn′(r′) have the same order, and n′ > n. Let n = 3k+6
and n′ = 3k′ + 6, and put s := k′ − k. Because the orders are equal, r′ = r − 3s by
Lemma 2. By a routine computation, Lemma 2 now implies

size Hn′(r′) − size Hn(r) =
1

2
s(r′ + r − 5).

This difference is always positive because r′ ≥ 2 and r = r′+3s ≥ 5. Hence Hn′(r′) is
larger than Hn(r) and, consequently, no two graphs in this family can be isomorphic.

Theorem 4 For n ≥ 9 there are at least
⌊

n−3
6

⌋
primitive maximal triangle-free

graphs of order n.

Proof. By Theorem 3 and Lemma 2, the graph Hs(r) is a primitive maximal
triangle-free graph of order n := r + s − 2. With 2 ≤ r ≤ 3k + 1, k ≥ 1 and
s = 3k + 6, it follows that there is an Hs(r) of each order from 3k + 6 to 6k + 5
inclusive. Every integer n ≥ 9 lies in at least one such interval. Indeed, 3k+6 ≤ n ≤
6k + 5 holds if and only if

⌈
n − 5

6

⌉
≤ k ≤

⌊
n − 6

3

⌋
.

By considering n modulo 6, it follows that the number of solutions for k is
⌊

n − 6

3

⌋
−

⌈
n − 5

6

⌉
+ 1 =

⌊
n − 3

6

⌋
.
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H9(4)

s4 s0

s1
s2 s3

P(0)

G3
W

Figure 6: The 4 primitive maximal triangle-free graphs of order 11

The theorem now follows because Lemma 3 guarantees that no two of these graphs
are isomorphic.

In fact, other non-isomorphic primitive maximal triangle-free graphs can be pro-
duced by “mixing” the order of extensions to the graph Hn. The first case where
this possibility occurs is [H12, N4, s4], which turns out not to be isomorphic to
H12(3) = [H12, N3, s3].

The primitive maximal triangle-free graphs formed by extending the circulant
graphs in the fashion described above make up a family whose cardinality we have
shown to be a linear function of n. Even for the relatively small values of n that
have been enumerated, there are many primitive maximal triangle-free graphs not
produced by our construction, so the question remains as to the cardinality of the
whole set. It is tempting to conjecture that this is exponential in n, but as yet we
have no strong support for this conjecture.

As indicated in Table 2, there are two primitive maximal triangle-free graphs of
order 10 and four of order 11. The order 10 graphs are the Petersen graph and the
extension H9(3) described above. The four order 11 graphs are shown in Fig. 6;
these include the circulant graph G3, the extension H9(4), and an extension P (0) of
the Petersen graph which will be discussed in the next section. The graph W is also
formed by extending H9(3), but using a different support set from that described in
the general construction above.
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2' 3'

2 3
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1 4
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2 3
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P

Figure 7: The Petersen graph and its unique primitive extension

5 Other Triangle-free Extensions

We constructed the graphs Hn(r) in the previous section by labelling a circulant base
graph Gk with Z3k+2 and rotating an independent support set modulo 3k+2 to define
neighbourhoods for support vertices in a sequence of hanging planter constructions.
This construction method can be adapted to other “starter” (base) graphs.

To illustrate, we shall outline such a construction based on the Petersen graph,
P . Label the vertices of P with Z5 × Z2 as shown in Fig. 7. For brevity, we write i
for (i, 0) ∈ Z5 × Z2 and i′ for (i, 1) ∈ Z5 × Z2. Up to automorphism, P has only one
primitive independent support set, namely {0, 2, 3′, 4′}. Add a new vertex s0 with
neighbourhood N∗

0 := {0, 2, 3′, 4′}, forming the extension P (0) := [P, N∗
0 , s0], also

shown in Fig. 7.
For 1 ≤ r ≤ 4, form a sequence of extensions P (r) by adjoining at each step a

new vertex with neighbourhood

N∗
r := N∗

0 + (r, 0) ⊆ Z5 × Z2

so that
P (r) = [P (r − 1), N∗

r , sr], 1 ≤ r ≤ 4.

With our abbreviated notation, we can write N∗
r = N∗

0 + r (mod 5), and say that N∗
r

is obtained from N∗
0 by rotation through r mod 5. Then, N∗

1 := {1, 3, 4′, 0′}, and so
on. Each set N∗

r is an independent dominating set for P , and it is easy to verify

Remark 9 Any two of the sets N∗
r , 0 ≤ r ≤ 4, have a common vertex.

Hence each set N∗
r is a primitive independent support set for P (r−1), 1 ≤ r ≤ 4.

It follows that {P (r) : 0 ≤ r ≤ 4} is a family of primitive maximal triangle-free
graphs.
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Now extend the order 15 graph P (4) by adjoining a new vertex t with neighbour-
hood N(t) := {sr : 0 ≤ r ≤ 4}, forming the extension

P (5) := [P (4), N(t), t].

This is a hanging planter with base P (4), support set N(t) and top vertex t. It is
again a primitive maximal triangle-free graph.

For 6 ≤ r ≤ 10, form a sequence of further extensions P (r) by adjoining at each
step a new vertex sr with neighbourhood N∗

r ∪ {t} where

N∗
6 := {0, 2, 1′}, and

N∗
r := N∗

6 + (r − 6, 0) ⊆ Z5 × Z2.

Thus
P (r) = [P (r − 1), N∗

r ∪ {t}, sr], 6 ≤ r ≤ 10.

For 6 ≤ r ≤ 10, each set N∗
r ∪ {t} is a primitive independent support set for P (r).

Hence

Remark 10 {P (r) : 0 ≤ r ≤ 10} is a family of primitive maximal triangle-free
graphs, where each P (r) has order r + 11.

A further sequence of five extensions can be defined similarly, but it is not clear
whether the sequence of extensions can be continued indefinitely.
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